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In artificial intelligence, abstraction is commonly used to account for the use of various levels of details 
in a given representation language or the ability to change from one level to another while preserving 
useful properties. Abstraction has been mainly studied in problem solving, theorem proving, knowledge 
representation (in particular for spatial and temporal reasoning) and machine learning. In such contexts, 
abstraction is defined as a mapping between formalisms that reduces the computational complexity of the 
task at stake. By analysing the notion of abstraction from an information quantity point of view, we 

pinpoint the differences and the complementary role of reformulation and abstraction in any represen- 
tation change. We contribute to extending the existing semantic theories of abstraction to be grounded 
on perception, where the notion of information quantity is easier to characterize formally. In the author's 
view, abstraction is best represented using abstraction operators, as they provide semantics for classifying 
different abstractions and support the automation of representation changes. The usefulness of a grounded 
theory of abstraction in the cartography domain is illustrated. Finally, the importance of explicitly rep- 
resenting abstraction for designing more autonomous and adaptive systems is discussed. 

Keywords: artificial intelligence; abstraction; reformulation; representation change; machine learning 

1. INTRODUCTION: THE NOTION OF 
ABSTRACTION IN ARTIFICIAL INTELLIGENCE 

Abstracting is a pervasive activity in human perception, 
conceptualization and reasoning. In AI there is a consen- 
sus (Ram & Jones 1995) that this ability to 'distil the 
essence from its superficial trappings' (Goldstone & Bar- 
salou 1998) is a key issue, and that finding an adequate 
representation is often the hard part of the problem to be 
solved when building 'intelligent' systems. In fact, in the 
early 1990s, Brooks did challenge the tenet of the 'good 
old fashioned AI' stating that finding a good abstraction 
of a problem was the essence of intelligence and was, in 
many AI systems, done by the researcher himself (Brooks 
1990, 1991). Thus, it is not surprising that a large pro- 
portion of AI successes rely as much on intelligent reason- 
ing as on adequate problem representation. 

Notwithstanding this fundamental role in AI, little study 
has been carried out directly on the subject, which has 
emerged as a side-effect of the investigation of knowledge 
representation and reasoning. In AI this ability to forget 
irrelevant details and to find simpler descriptions has been 
investigated, with few exceptions, either in problem solv- 
ing (Sacerdoti 1974; Plaisted 1981; Giunchiglia & Walsh 
1992; Ellman 1993; Knoblock 1994; Holte et al. 1996), 
or in problem reformulation (Amarel 1983; Lowry 1987; 
Subramanian 1990). An account of these researches is 
presented in Holte & Choueiry's (2003) contribution to 
this issue. In these studies, abstraction is usually not 
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defined in a constructive way but rather a posteriori as a 

particular representation change that reduces the compu- 
tational complexity of the task at stake. 

In problem solving and theorem proving, abstraction is 
often associated with a transformation of the problem rep- 
resentation that allows a theorem to be proved (or a prob- 
lem to be solved) more easily, i.e. with a reduced 

computational effort, according to the process described in 

figure 1. This pragmatic view of abstraction proved very 
useful to its intended goal and provides a means to charac- 
terize a transformation that is or is not an abstraction. The 
intuitive idea is that a representation change is an abstrac- 
tion if the computational cost to solve a class of problems 
or demonstrate a class of theorems is significantly 
reduced. Representation changes may be recursively 
applied defining a hierarchy of representations of increas- 

ing level of abstraction (Sacerdoti 1974; Christensen 
1990; Ellman 1993; Knoblock 1994; Shawe-Taylor et al. 

1998). However, this view may not be sufficient for build- 

ing new abstractions that rely on the definition of new con- 

cepts. Indeed, computational issues, even though 
important, are subsequent to the establishing of meaning- 
ful relations between the 'concepts' and their referents in 
the world. In concept representation, in fact, the role of 
abstraction seems more related to 'making sense' of the 

perception of the world, by transforming it into a set of 

meaningful 'concepts', prior to an efficient use of them. 
Abstraction is thus a fundamental mechanism for saving 
cognitive efforts, by offering a 'higher' level view of our 

physical and intellectual environment. Goldstone & 
Barsalou (1998) have recently advocated a stricter link 
between perception and conceptualization in cognitive 
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Figure 1. Abstraction process for problem solving. Step 1 
concerns a representation change justified by the need to 
reduce the computational complexity to solve a so-called 
ground problem. Step 2 concerns solving the abstracted 
problem. Step 3 concerns the refinement of the abstract 
solution back to the ground representation space. 

science. Their approach offers a cognitive foundation to 
our grounded model of abstraction. 

In this paper I am interested in the role played by 
abstraction in a phase preceding problem solving, namely 
the phase of conceptualizing a domain, when a set of 

appropriate, possibly interrelated, concepts is defined. In 
a domain, concepts are used for a variety of different tasks; 
they must then be internally organized in a flexible and 

dynamic way, allowing the properties that are relevant for 
the task at hand to be easily and quickly retrieved. As 
works on selective attention confirm (Goldstone & Barsa- 
lou 1998), humans show an amazing ability to change the 

representation level of details and choose relevant infor- 
mation. However, when currently irrelevant details are 
removed, they must not be deleted, but simply hidden, 
because they may become useful for another task. Hence, 
a model of the abstraction process should also accommo- 
date linking different representations, in both directions. 

Notwithstanding its diffuse presence in human percep- 
tion and reasoning, abstraction is an elusive notion, diffi- 
cult to capture in formal terms. Given the multiplicity of 

goals and tasks in which abstraction is involved, the identi- 
fication of a unique set of properties which it has to satisfy 
may not be possible. In fact, there is currently no general 
framework that provides the means for understanding the 
different facets of abstraction. A comprehensive review 
and a unified approach to problem-solving-oriented 
abstraction have been proposed by Giunchiglia & Walsh 

(1992) and Choueiry et al. (2003). 
If abstraction is difficult to formalize, devising different 

abstractions from a given initial representation is likely to 
be even more complex. However, the ability of an agent 
to change or adapt its representation of the world is 

undoubtedly essential for surviving and solving complex 
problems. The practical motivation in this article is to 

Figure 2. (a) A set of objects on a bar table. (b) This image 
is more abstract, because the glass is hidden. This 
transformation is a domain hiding abstraction. 

enquire into the abstraction process in general, and to pro- 
pose an operational framework to devise systems that 

automatically and iteratively build their own abstractions. 
To achieve this goal it is necessary not only to define 
abstraction(s), but also to propose the means for exploring 
different abstractions and operationalizing them. 

To achieve a better understanding of the abstraction 

process, several problems remain to be solved. First, a 
definition of abstraction should be provided, at least in a 
circumscribed sense. Abstraction is intuitively related to 
the notion of 'simplicity', but this link does not make its 
definition any easier, as simplicity seems to be an equally 
elusive notion. Moreover, different properties may be 

required for abstraction processes involved in different 
tasks. The problem is thus twofold: (i) to identify what 

properties are likely to be useful for a task; and (ii) once 

they have been found, how to formally represent them. A 
more concrete problem is to define mechanisms to per- 
form abstraction in practice, i.e. to identify operators that 
carry out transformations between different abstraction 
levels. Finally, one of the most challenging problems is to 

explain how useful abstractions are acquired and/or 
formed. The rest of the paper is organized as follows: ? 2 
illustrates examples of abstraction, to give the reader an 
intuitive semantics for the transformations referred to as 
abstract. Section 3 briefly reviews existing theories of 
abstraction. Section 4 presents a grounded framework for 
abstraction in concept representation, whereas ? 5 intro- 
duces the notion of abstract operators. Section 6 gives an 
illustration of the interest of a grounded theory of abstrac- 
tion in the cartography domain, and finally, ? 7 suggests 
directions for future work. 

2. INFORMAL PRESENTATION OF 
PERCEPTION-BASED ABSTRACTIONS 

In this section I provide some examples of transform- 
ations1 that I intend the notion of abstraction to capture. 
To provide the reader with an intuitive idea of the seman- 
tics of these transformations, I have chosen transform- 
ations of images. The different transformations of images 
presented differ by their properties, be it their content 
(domain related) or their description (co-domain related). 
Whenever possible, these transformations are related to 
their cognitive equivalents as described in the seminal 
work by Goldstone & Barsalou (1998). 

(a) Domain hiding 
In figure 2, a number of objects are situated on a table 

in a bar. A filter placed on the top hides the glass. It is 
still there, but it can no longer be seen unless the filter is 

Phil. Trans. R. Soc. Lond. B (2003) 
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Figure 3. By hiding the colour of an image of a rose (a), a 
more abstract image is obtained (b) This transformation, 
that hides elements of the description, is called co-domain 
hiding. 

(a) (b) 

Figure 4. By lowering the resolution of an image (a), a more 
abstract one (b) is obtained. This transformation corresponds 
to a lossy sub-sampling in image compression. 

removed. From a cognitive point of view, this transform- 
ation corresponds to a focalization (Goldstone & Barsalou 

1998). Abstraction reduces (hides) part of the domain, to 

focus, for example, on the word 'Ciao' that has been 
drawn in the foam of the coffee by the deft Italian barman. 
Simons & Levin (1Q)7) have shown that when a part of 
an image is slowly hidden (such as the glass in figure 2b), 
one may be blind to this change. This change blindness 

phenomenon in visual perception characterizes the fact 
that very large changes occurring in full view in a visual 
scene may go unnoticed (O'Regan 2001). Domain hiding 
is arguably the most basic and common form of abstrac- 
tion explored in AI. 

(b) Co-domain hiding 
In figure 3, two pictures of a rose are shown: figure 3a 

is a coloured image, and figure 3b is a grey-level image. 
Changing from the first to the second picture, the infor- 
mation about the colour has been hidden. This transform- 
ation is related to what Goldstone & Barsalou (1998) call 

selectivity, i.e. the ability not to pay attention to useless 

perceptual features in a given task. We may notice the 

asymmetry of the relation between figure 3a and b: 
whereas figure 3b can be obtained from figure 3a, the 
reverse is not possible (unless the removed information 
can be memorized). In fact, re-colouring the picture by 
means of a graphic program is indeed possible, but there 
is no guarantee that the resulting picture actually corre- 

sponds to the original coloured picture of the world that 
is captured by the same optical instrument. Co-domain 

hiding corresponds to another widely considered abstrac- 
tion, where part of the object description is hidden. 

(c) Domain reduction 
In figure 4 a different case is illustrated. Figure 4a is 

transformed by grouping four adjacent pixels into a single 

Figure 5. By thresholding with only two levels a 256 grey- 
level picture (a), a much less detailed picture is obtained (b). 
This transformation is called coarse quantization in image 
compression. 

one, associating to the compound the mean value of col- 
ours and brightness of the four component pixels. The 
result is a change in resolution, and we consider the image 
in figure 4b more abstract than that in figure 4a. Abstrac- 
tion, in this case, reduces the domain of a function, 
making sets of points (sixteen adjacent pixels) indis- 

tinguishable. This transformation corresponds to the blur- 

ring cognitive operation defined by Goldstone & Barsalou 

(1998). In image compression, this transformation is an 

implementation of the sub-sampling technique2 (Toelg & 

Poggio 1994). Sub-sampling reduces the number of bits 

required to describe an image and the quality of the sub- 

sampled image is said to be lower than the quality of the 

original. It is called a lossy compression algorithm.3 
Domain reduction thus corresponds to any abstraction 
where a group of objects is replaced by a new prototypic 
object. 

(d) Co-domain reduction 

Starting from a grey-level picture of a person (see figure 
5a), a thresholding can be performed using only two grey 
levels (black/white) (see figure 5b), thus hiding many of 
the details of the original image. In this case, abstraction 
reduces the co-domain of a function, making sets of values 

indistinguishable. In image processing this transformation 
is called quantization (Toelg & Poggio 1994). Coarse 

quantization is similar to sub-sampling in that information 
is discarded, but the compression is accomplished by 
reducing the numbers of bits used to describe each pixel, 
rather than reducing the number of pixels. Each pixel is 

reassigned an alternative value and the number of alterna- 
tive values is less than that in the original image. This type 
of abstraction is widely used at the level of symbolic 
description to discretize numerical attributes. The intuitive 
idea is to associate a symbol to a set of values that are 
considered indiscernible (Dougherty et al. 1995; Kohavi & 
Sahami 1996). Co-domain reduction corresponds to all 
abstractions where the domain of values taken by object 
descriptors, function or relation is reduced. 

(e) Domain aggregation 
Finally, in figure 6 a very important type of abstraction 

is described. If we were asked, in front of the desk rep- 
resented in figure 6a, what we see on the table, most of 
us would answer a 'computer', and not 'a monitor, a key- 
board and a mouse'. We have spontaneously grouped 
together a set of objects that are functionally related into 
a composite object, i.e. a 'computer'. In figure 6, we may 

Phil. Trans. R. Soc. Lond. B (2003) 
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(a) (b) 
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Figure 6. A monitor, a PC tower, a keyboard and a mouse are each represented as individual objects on top of a table (a). By 
aggregating them, a more abstract image-where a computer is viewed as a whole-is obtained (b). 

P I? . (/010 0 . co-domain domain 
reduction 0 0 0 hiding mage o00oo o 

*@00 G)0 @000 * 0 

# x y intensity # x y intensity # x y intensity 
1 1 0.18 co-domain 1 1 1 low 1 1 2 high 

relational 2 1 2 0.98 2 1 2 high domain 2 2 3 high 
table 3 1 3 0.34 reduction 3 1 3 3 low hiding 3 2 4 high 

...... ::: - ' ' ' :. ..4 3 2 high 

16 4 4 0.65 16 4 4 high4 high 
6 4 4 high 

....... 
" . 

.. ....... _hi g h 

Spot(sl) Spot(sl) Spot(s' 1) 
Pos(sl,l,l) Pos(sl,1,1) Pos(s'1,1,2) 

Intensity(s1,18%) Intensity(s1, low) Intensity(s'1, high) 
predicate I 

logic Spot(s 6) Spot(sl6) Spot(s'6) 
Pos(s16,4,4) Pos(s16,4,4) Pos(s'6,4,4) 

Intensity(s16,65%). Intensity(sl6, high). Intensity(s'6, high). 
......------------------ -= -,; -... R .-------- 

Figure 7. Illustrative examples of a similar abstraction viewed as a transformation of an image, a relational table and facts in a 
predicate language. This abstraction is at each level a combination of a co-domain reduction (discretize the spot intensity) and 
domain hiding (hides spot of low intensity). 

notice that, even though the whole computer is perceived 
at first sight, the components do not disappear; in fact, as 
soon as we speak of 'computer configuration', they can be 
retrieved and used again. This transformation corresponds 
to the productivity human cognitive operation defined by 
Goldstone & Barsalou (1998). Domain aggregation is a 
transformation that corresponds to abstraction where 

objects are composed to build new ones. 

(f) Abstract transformations in other knowledge 
representation formalisms 

Domain hiding, co-domain hiding, domain reduction, 
co-domain reduction and domain aggregation are typical 
transformations that illustrate the notion of perception-based 
abstraction. In fact, similar transformations are used within 

non-graphical knowledge representation formalisms, be it 

logical or not. Relational databases, propositional, or first- 
order logic are other types of representation formalism 
where abstractions are typically considered. Figure 7 illus- 
trates an abstraction within three different formalisms. At 
the perception level, this abstraction corresponds to a com- 
bination of both co-domain reduction (as the resolution of 
the image has been lowered) and domain hiding (as spots 
of pixels whose intensity is not above a threshold are 

hidden). At the relational level, this transformation 
respectively corresponds to the inclusion and select 
relational database operations (Goldstein & Storey 1999). 
At the predicate level, this transformation corresponds to 
a value discretization followed by an object selection. 

3. ABSTRACTION: DEFINITIONS AND 
APPROACHES IN ARTIFICIAL INTELLIGENCE 

The previous section aimed at illustrating a set of 

examples of transformations that correspond to abstrac- 
tions. They illustrated that the notion of abstraction does 
not have to be solely related to the reduced computational 
complexity. The notion of information decrease does in fact 
better characterize these different examples. This section 
defines the notion of abstraction, and contrasts it with that 
of reformulation and representation change. 

(a) Representation changes, abstraction 
and reformulation 

There are many tasks or problems for which there exists 
one good representation,4 which allows the definition of 
efficient and sound algorithms. This said, there are also 
numerous problems for which a good representation is 

Phil. Trans. R. Soc. Lond. B (2003) 
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either as yet unknown or exists independently of precise 
goals. Since the beginning of AI, mechanisms allowing 
changes of representation (Amarel 1968; Korf 1980; 
Benjamin et al. 1990) and problem reformulation (Riddle 
1990; Wneck & Michalski 1994; Lavrac & Flach 2001; 
Choueiry et al. 2003) have been envisioned. 

A seminal contribution to the understanding of rep- 
resentation changes in AI comes from Korf (1980). 
Within problem solving, he distinguishes between trans- 
formations that are isomorphisms and those that are homo- 

morphisms. Isomorphisms preserve the quantity of 
information of the initial problem but modify the structure 
that represents this information. Changing the represen- 
tation of a circle of radius R from 2 + y2 = R2 to p= R 
and 0 E [0,27-] is a typical case. By contrast, homomor- 
phisms change the formalism but modify the infor- 
mation quantity.5 

(b) A definition of abstraction 
Before giving a general definition of abstraction, it 

should be noted that the term 'abstraction' has been 
widely used in AI, and in a wide range of contexts: abstract 

problem solving and planning (Sacerdoti 1974; Giunchig- 
lia & Walsh 1992), abstract states (Provan 1995; Holte 
et al. 1996), temporal abstraction (Euzenat 1995; Shahar 
1997; Bettini et al. 1998), space abstraction (Forbus et al. 
1991), abstracted causal model (Iwasaki 1990), languages, 
classes and abstract types (Briot & Cointe 1987), abstract 

interpretation (Cousot 2000), knowledge and abstract 
reasoning (Hobbs 1985; Imielinski 1987; Smoliar 1991), 
abstract proof (Giunchiglia & Walsh 1992), abstract 
lambda-calculus (Orlarey et al. 1994), abstract structure 
(Zucker & Ganascia 1996), abstract conceptual graph 
(Bournaud et al. 2000), abstract data (Smith & Smith 
1977; Goldstein & Storey 1999) and abstract genotype 
(Bentley & Kumar 1999), etc. 

The common idea that underlies these various uses of 
the word abstraction echoes the human capacity to focus 
on simpler descriptions in perception and conceptualiz- 
ation as well as in reasoning (Goldstone & Barsalou 1998, 
p. 62). Giunchiglia & Walsh (1992), whose work is among 
the most cited in the field of abstraction, define abstrac- 
tion as a process of mapping an initial representation of a 

problem. The latter is built by hiding details from the 

ground one, to simplify the exploration space preserving 
some 'properties' desirable to map back the abstract sol- 
ution. Definition 1 is an attempt to summarize the com- 
mon view of abstraction in AI. 

Definition 3.1. An abstraction is a change of representation, in 
a same formalism, that hides details and preserves desirable 
properties. 

This definition is more restrictive than that proposed by 
Giunchiglia & Walsh (1992), as it requires that the formal- 
ism remain unchanged in the transformation. The useful- 
ness of this restriction is better in distinguishing the 
essence of an abstraction from the general notion of rep- 
resentation change. Nevertheless, frequently an abstrac- 
tion and a change of formalism are combined into a 
representation change as described in figure 8a. Indeed, 
abstraction makes it possible to change the quantity of 
information represented, allowing a reformulation in a less 

expressive or simpler formalism to become possible. In this 
context, the term reformulation is restricted to precisely 
characterize a change of the sole representation formal- 
ism.6 

Definition 3.2. A reformulation is a change of representation, 
from one to another formalism, preserving the quantity of infor- 
mation involved. 

A review of the relation between the notion of abstraction 
and 'approximation' is beyond the scope of this article. 
However, there is a large body of research on approximate 
reasoning7 (Imielinski 1987; Lesser et al. 1988; Subra- 
manian 1990), 'qualitative reasoning' (Kuipers 1986), 
temporal reasoning (Bettini et al. 1998) and spatial 
reasoning (Forbus et al. 1991). Allen's famous set of 
relations between interval diagrams is a good illustration 
of links between approximation and abstractions (Allen 
1984). It describes all possible relations among time inter- 
vals according to a logical framework: before, meets, over- 
laps, during, starts, finishes and equals. 

(c) The difficulty to define the notions of 
'simplicity', 'details' and 'desirable properties' 

Definition 3.1 remains elusive, and, in effect, when one 
tries to formalize the definition of an abstraction one 
encounters the formalization of the notions of details, desir- 
able property and simplicity. The following is a quick survey, 
more particularly in the context of a machine learning 
task, which clearly shows the variety of characterization 
given for these three notions upon which the definition of 
abstraction relies. This diversity underlines the difficulty 
in formalizing definition 3.1. 

The notion of 'detail' is often associated with that of rel- 
evance to a class of tasks (Subramanian et al. 1997; Lavrac 
et al. 1998). Details that are hidden are indeed defined as 
being 'less relevant' to these tasks. In machine learning, 
for example, Blum & Langley (1997) have given several 
definitions of attribute relevance. Their definitions are 
related to measures that quantify the information brought 
by an attribute with respect to other attributes, the class 
or the sample distribution. Based on these definitions a 
filter approach to feature selection (a kind of co-domain hid- 
ing at the language level) may be applied to an initial rep- 
resentation of examples to ease the learning task by 
reducing the number of features. Domain hiding is also 
used in machine learning to reduce the number of 
examples to speed up instance-based algorithms such as 
k-Nearest Neighbors (kNN) (Wilson & Martinez 1998). 
In problem solving where a basic mechanism to speed up 
the search is to hide parts of the operators' pre-conditions, 
the 'criticity' to satisfy an operator pre-condition may be 
used to rank the pre-condition and decide the ones that 
will be dropped (Bundy et al. 1996; Yang 1997). It is also 
possible to define a domain-independent notion of detail. 
In that case, it is related to the notion of scale or granularity 
of descriptions (Hobbs 1985; Imielinski 1990; Smoliar 
1991). 

The notion of 'desirable properties' depends on the field 
where abstractions are used. In problem solving, for 
example, a classic desired property is the 'monotonicity' 
(Sacerdoti 1974; Knoblock 1994). This property states 
that operators' pre-condition does not interfere once 

Phil. Trans. R. Soc. Lond. B (2003) 
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Figure 8. (a) Change of representation viewed as a combination of abstraction and reformulation. (b) A change of 
representation from a natural text representation to a 'bag of words' representation. The abstraction assumption is that the 
presence of a word is relevant and not its position. This representation change is often used in text indexing. 

abstracted. Another useful property is the 'downward 
refinement' (Bacchus & Yang 1994) that states that no 
backtrack in a hierarchy of abstract space is necessary to 
build the refined plan. In theorem proving, a desirable 

property states that for each theorem in the ground rep- 
resentation there exists a corresponding abstract one in 
the abstract representation (this property is called TI 

abstraction). In machine learning, a desirable property 
states that generalization order between hypotheses is pre- 
served (Giordana & Saitta 1990). In constraint satisfaction 

programming, a desirable property is that the set of vari- 
ables that are abstracted into one have 'interchangeable 
supports' (Freuder 1991). More generally, there is a 

domain-independent desirable property: it states that a 

given order relation is preserved by an abstraction (Hobbs 
1985). 

The notion of 'simplicity' plays a key role in the charac- 
terization of abstracted representation. There is abundant 
literature discussing the simplicity of a representation. In 
machine learning, this notion is fundamental because it 

guides the choice between equally accurate concept 
descriptions. Indeed, the 'simplest' concept is invariably 
favoured following the parsimony principle or Occam's 
razor8 (Blumer et al. 1987; Domingos 1998). There are 
different measures of the simplicity of a hypothesis space 
that have been proposed. The capacity,9 for example, is a 
measure of the power of a collection of functions to dis- 
criminate between classes. Some other principles or meas- 
ures of simplicity are used in machine learning: the 
Minimum Description Length (Rissanen 1985) and the 
Minimum Message Length (Wallace & Boulton 1968). 
Finally, mention should be made of the rich literature on 
information-theoretic approaches to the notion of sim- 

plicity (Kolmogorov 1965; Li & Vitanyi 1993), compu- 
tational learning (Blumer et al. 1987; Kearns 1990) and 
statistical learning (Vapnik 1995). 

4. THEORIES OF ABSTRACTION 

Section 3 has provided a workable definition of a trans- 
formation that is or is not an abstraction. An abstraction 

theory goes beyond a definition, and is a step towards 

understanding the reasons that justify the choice of a parti- 
cular abstraction and the search for better abstractions. A 

comprehensive theory of the principles underlying 
abstractions is useful for a number of reasons. From a 

practical point of view it may provide: (i) the means for 
clearly understanding the different types of abstraction 
used in past work; (ii) semantic and computational justifi- 
cations for using abstractions; and (iii) justifications to 
automatically construct useful abstractions. 

Moreover, an understanding of different abstractions within 
a common framework can allow the transfer of techniques 
between disparate domains (Nayak & Levy 1995). There 
have been several attempts to propose such a type of 

theory. Many of them have been carried out in theorem 

proving, where the role of abstraction is to find a sketch 
of a proof, whose details can be filled in later. This section 
gives a brief account of existing theories of abstraction and 
their associated definition of abstraction. 

(a) Abstraction as syntactical mapping 
(i) Abstraction as predicate mapping 

Predicate mapping (Plaisted 1981; Tenenberg 1987) is 
a class of abstractions based on the observation that the 
distinctions between a set of predicates P1, ..., Pn in a 
theory may become irrelevant for certain inferences. An 
abstract theory can be constructed by replacing all occur- 
rences of the predicates Pi in the base theory by a single 
abstract predicate Pa. Let us consider, for example, the 
following base theory that states that Hondas are Japanese 
cars, BMW are European cars, and both European and 
Japanese cars (among others) are types of car: 

BASE THEORY HONDA(x) = JAPANESECAR(x), (4.1) 

BMW(x) => EUROPEANCAR(x), (4.2) 

JAPANESECAR(x) = CAR(x), (4.3) 

EUROPEANCAR(x) = CAR(x). (4.4) 

The distinction between the predicates Pi 
= JAPANESECAR and P2 = EUROPEANCAR may 
become irrelevant (e.g. when trying to answer a query 
CAR(A)), and therefore these predicates can both be 

mapped to Pa = JAPEUROCAR. 
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PREDICATE MAPPING JAPANESECAR - JAPEUROCAR, 
EUROPEANCAR - JAPEUROCAR. 

This abstraction applied to axioms (4.1)-(4.4) yields the 

following simpler abstract theory: 

SYNTACTICALLY ABSTRACTED THEORY HONDA(x) JAPEUROCAR(x, (4.5) 

BMW(x) > JAPEUROCAR(x), (4.6) 

JAPEUROCAR(x) = CAR(x). (4.7) 

However, suppose the base theory also includes the fol- 

lowing axioms stating that European cars are fast and 

Japanese cars are reliable: 

BASE THEORY EUROPEANCAR(x) = FAST(x), (4.8) 

JAPANESECAR(x) > RELIABLE(x). (4.9) 

Applying the same syntactical mapping to axioms (4.8) 
and (4.9) would result in the following: 

ABSTRACT THEORY JAPEUROCAR(x) = FAST(x), (4.10) 

JAPEUROCAR(x) > RELIABLE(x). (4.11) 

However, combining these two axioms with axioms (4.5) 
and (4.6), leads to undesirable false proofs (Plaisted 
1981). For example, one can infer that Honda cars are 
fast, and BMWs are reliable, inferences not sanctioned by 
the base theory (Nayak & Levy 1995). To avoid this prob- 
lem, Tenenberg (1987) has proposed a restricted type of 

predicate mapping. After replacement of the predicates in 
the clauses, only the clauses that do not bring inconsist- 

ency are kept. 

(ii) Abstraction as mapping between formal systems 
Giunchiglia & Walsh (1992) have extended the syntac- 

tic view of abstraction of Plaisted (1981) to a mapping 
between formal systems. A formal system I is defined by a 

triple (A,Ai,2), where A is the language, A is the deductive 
mechanism and D is the set of axioms. They define an 
abstraction as follows: 

Definition 4.1 (formal abstraction; Giunchiglia & Walsh 
1992). An abstraction, denoted f: X, - 2, is the union of three 
functions fA : A -A A2, f,A: A, - A2, and ff : [2, - Q2, which 
respectively transform the formulas of the initial language, inference 
rules and axioms respectively into the abstract formulas, the abstract 
rules and the abstract axioms. 

According to Giunchiglia & Walsh (1992), the majority 
of abstractions in problem solving and theorem proving 
may be represented within this framework. They also 
notice that most abstractions modify neither the axioms 
nor the inference rules. Abstractions are therefore, in most 
cases, mapping between languages. They have introduced 
a useful distinction between abstraction: TD and TI. This 
distinction is used to classify the various abstractions 
found in problem-solving and theorem-proving literature. 
TI abstractions are those whose image by fA of each the- 
orem from the ground space is a theorem in the abstract 
space. The TD abstractions are, on the contrary, abstrac- 
tions such that images of certain theorems in the ground 
space are no longer a theorem in the abstract space. 

Giunchiglia and Walsh argue that useful abstractions for 
the resolution of problems are the TI abstractions because 

they preserve all theorems. In problem solving, given S 

the description of a situation, i.e. a set of ground facts, a 
widely used abstraction consists in hiding part of precon- 
dition operators as it happens in STRIPS.10 The intuition 
is to build an abstract plan that ignores the non-critical 

preconditions of operators and then refines it. Such 
abstraction may also be categorized as a TI abstraction as 
all the plans valid in the ground space are also valid in the 
abstract space. Their theory of abstraction11 is not directly 
related to the notion of simplicity, and although it is a 
powerful framework to describe contributions, it is not 
meant to support the construction of new abstractions. 

(b) Abstraction as semantic mapping 
(i) Semantic mapping of interpretation models 

The fundamental shortcomings of the syntactic theory 
of abstraction are that: (i) while it captures the final result 
of an abstraction, it does not capture the underlying justi- 
fication that leads to the abstraction; (ii) TI abstractions 
potentially lead to false proofs; and (iii) the abstracted 

theory may not be the strongest one given the abstraction. 
For example, it appears that adding axiom (4.12) yields 
the strongest theory that removes predicates JAPANESE- 
CAR and EUROPEANCAR and still does not admit 
false proofs: 

SEMANTICALLY ABSTRACT THEORY JAPEUROCAR(x) 
> (FAST(x) V RELIABLE(x)). (4.12) 

Nayak & Levy (1995)-extending Tenenberg's work- 
have proposed a semantic theory of abstraction. Their 
theory defines abstraction as a model-level mapping rather 
than predicate mapping. Instead of viewing abstraction as 
a syntactic mapping (like Giunchiglia & Walsh 1992), they 
view abstraction as a two-step process: a kind of semantic 

mapping. The first step consists in abstracting the 
'domain', and the second one in constructing a set of 
abstract formulae to capture the abstracted domain. This 
semantic theory yields abstractions that are weaker than 
the base theory, i.e. they are strictly a subset of TD. Recall 
that Giunchiglia and Walsh do not advocate TD abstrac- 
tions (for problem solving), because, although sound, they 
'lose completeness' in comparison with TC abstractions, 
which preserve completeness, and TI, which lose sound- 
ness. Nayak and Levy introduce two important notions: 
MI abstractions (MI that are a strict subset of TD, see defi- 
nition 4) and simplifying assumptions (which allow one to 
evaluate the utility of an abstraction depending on the 
reliability of this assumption). They defined abstraction as 
follows: an abstraction mapping H7: interpretations 
(Lbase) == interpretations (Labs) is a model-level specifi- 
cation of how the interpretations of Lbase are to be 
abstracted to interpretations of Labs. 

Definition 4.2 (model-increasing abstraction; Nayak & 
Levy 1995). The theory Tabs is a model-increasing abstraction for 
Tbase with respect to an abstraction mapping H if for every model 
Mbase of Tbase (the set of sentences in Lbase), H(Mbase is a model of 
Tabs (the set of sentences in Lbase). 

The work of Nayak and Levy, although only considering 
a limited subset of the possible abstractions (i.e. 'domain 
abstraction'), is, in my view, a fundamental contribution 
to a theory of abstraction. 

Phil. Trans. R. Soc. Lond. B (2003) 



ground 
structure 

<^'^> 
A 

interpretation model mapping 

(Giordana & Saitta 1990; 
Nayak & Levy 1995) 

. abstract 
structure _ 

ground - - _syntactical mapping abstract 

language (Giunchiglia & Walsh 1992) language 
A 

Figure 9. Theoretical approaches to abstraction according to the level of representation they operate at: mapping of theories 
(Plaisted 1981), mapping of clauses (Giunchiglia & Walsh 1992) and mapping of interpretation models (Giordana & Saitta 
1990; Nayak & Levy 1995). 

(ii) Semantic mapping of formulae 
Historically, Giordana & Saitta (1990) were precursors 

in the semantic approach to predicate mapping. Indeed, 
they did not consider abstraction as a purely syntactic 
transformation but as a semantic one that preserves the 

generality order between formulae.12 The abstraction of a 
clause C, expressed in a language f is another clause C', 
where relations in C have been renamed or grouped into 
new ones defined over an abstract language f'. In their 

theory, an abstraction is defined as follows: 

Definition 4.3 (abstraction; Giordana & Saitta 1990). An 
abstract theory, mapping a language of clauses f to an abstract 
language f', is a consistent set of definitions of the type 
Vx3 y = (Yi= 1,n) such that [T(x) f (x,y) V ... V fn(,y), 
where r is an abstract predicate off' andfi= ,n are formulas based 
on predicates in fapplied to the variables x and Yi= I,n 

An abstraction is, in their view, the definition of new 

concepts at the extensional level: a specific correspon- 
dence between the variables of the abstract formula and 
those of the initial one. These abstractions are a subset of 
the TD abstractions and are particularly useful to define 
the notion of term abstraction as described in ? 2e and fig- 
ure 6. In their theory, an abstraction of five pixels centred 
on a pixel x into a 'cross'-shaped larger pixel would be 

represented as follows: 

Vx3y,z,t,uCross(x) (Pixel(x) A Pixel(y) A Pixel(z) A Pixel(t) A Pixel(u) 

A Above(y,x) A Below(z,x) A Right(t,x) A Left(u,x)). 

(c) Abstract view on abstraction theories 

Although the theories presented in this section bear 
similar titles, they are quite different according to the rep- 
resentation level to which the abstraction is considered. 
The Plaisted (1981) theory considers the abstraction at 
the level of logical theories. Giunchiglia & Walsh (1992) 
have adopted a syntactical level and are mainly interested 
in TI abstractions. Nayak & Levy (1995) as well as 
Giordana & Saitta (1990) have proposed to define seman- 
tical abstractions at the interpretation model level. These 

latter approaches give the means to capture what makes 
the essence of the abstraction: a 'simplifying assumption'. 
Figure 9 summarizes these different contributions by con- 
trasting the type of representation level at which they 
operate. 

(d) Practical utility of abstraction within 

representation change 
To conclude this brief state of the art of theories of 

abstraction, it is worth assessing the utility of abstractions 
in practice. The vast majority of works that mention 
'abstraction' underline its positive effects, in particular 
performance increase. Reported speed-ups are often 

exponential (Giunchiglia 1996). However, in certain cases 
abstraction can lead to reductions in performance13 that 
are worse than the best possible benefits (Backstrom & 
Jonsson 1995). Although Giunchiglia has shown that the 

negative results of Backstrom and Jonsson correspond to 

pathological problems (Giunchiglia 1996), it is neverthe- 
less highly probable that there exists, for abstraction, an 

analogue of the no-free-lunch-theorem (Wolpert 1995). It 
is thus essential to choose abstractions carefully.14 To 
summarize, the utility of an abstraction is related to the 

utility of the representation change that is associated with 
it. Several factors must be taken into account, including: 

(i) the computational cost of the reformulation from the 

ground problem to the new representation; 
(ii) the ratio between the complexity of the abstract 

problem and that of the initial problem; 
(iii) the computational cost of the reformulation of the 

abstract solutions back to the initial representation; 
(iv) the density of solutions of the initial problem within 

the new representation. 

5. A GROUNDED DEFINITION OF ABSTRACTION 

Most of the representation changes called abstraction 
in AI reduce the quantity of information. If the theories 
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presented in ? 4 are good at characterizing and classifying 
existing abstractions, they fail to offer a constructive 

approach to the problem. In this section, a somewhat 
novel perspective on abstraction is proposed that orig- 
inates from the observation that the conceptualization of 
a domain involves, simultaneously, at least four different 
levels. Given these four levels, a theory is proposed that 
is grounded in the lowest level (the perception level) but 
offers the means to build compatible abstractions at any 
upper level of representation. 

(a) Representation levels and description 
framework 

Underlying any source of experience there is the world 
W, which for the sake of simplicity we assume is not 

changing over time. The world is not really known, 
because we, or artificial systems, only have a mediated 
access to it through our/their perception. Thus, what is 

important for an observer is not the world per se, but the 

perception P that she/he has of it. P specifies the nature 
of the elements that constitute the result of perception; for 

example, P may say that the perception consists of the 

brightness and colour of a matrix of pixels, or of a given 
number of objects, described by shape and size. An actual 
world perception P is obtained through a process J' of 

signal/information acquisition from/about the world: 

P= y(W). 

The above notation synthetically indicates that the percep- 
tion process /? applied to the world Wprovides particular 
content to the elements specified by P. For the sake of 

exemplification, let us consider a sensor used in molecular 

biology to measure the expression of genes, such as the 
one reported in figure 10. 

P defines the elements of the world that we consider 

elementary (or atomic) percepts. To specify the reasons 

why these elements are selected is beyond the scope of 
this paper. Even though these elements may be rather 

complex, they are considered the basic building blocks of 

any further conceptualization. In the case of figure 10, for 
instance, the process /, which underlies the Microarray 
detector, is the hybridization of probes with sample and 
control cDNA, and the perception P consists of the signal 
intensity generated by the sum of the fluorescence green 
corresponding to the concentration of sample and red cor- 

responding to the concentration of control. A 'natural' 

object to consider is a spot. Nevertheless, the spot is itself 
built of pixels. They could equally well have been selected 
as basic objects.15 

The basic stimuli in P can be categorized according to 

ontologies, including objects, attributes, functions and 
relations. More precisely, objects can be atomic or com- 

pound; atomic objects do not have parts, whereas com- 

pound objects do have parts that are themselves objects: 
a part-of hierarchy relates compound objects to their con- 
stituents. Both atomic and compound objects have 

properties, which we call attributes. Other types of proper- 
ties involve groups of objects, resulting in functions and 
relations. The percepts in P, generated by J'(W), can be 

grouped into four classes: 

P= < OBJ, ATT, FUNC, REL > . 

OBJ is the set of perceived objects, ATT is the set of 

perceived object attributes, FUNC is the set of perceived 
functional links and REL is the set of perceived relations. 
We underline that in Wthere is no explicit notion of attri- 
bute or relation, but that these are meta-notions developed 
by the observer through a previous, separate process, in 
order to avoid dealing with the original stimuli for each 
new task. In the case of figure 10, an object x is the signal 
on a spot, an attribute can be its intensity, its colour or 
its surface, a function might be a link between the coordi- 
nate of the spot and the identifier of the corresponding 
gene. Finally, a relation could specify the relative positions 
of two probes (this information is in fact useful to spatially 
normalize the signal-to-noise ratio on the chip). 

At the perception level, the percepts 'exist' only for the 
observer, and only during the act of perceiving. Their 
reality consists in the stimuli sent to the observer. In the 
considered example of figure 10, the stimuli come from 
the microarray, and each occurrence of a signal in a spot 
will decay without leaving any long-term effect 
(fluorescence is naturally decaying). To allow the stimuli 
to become available over time, for retrieval and further 
reasoning, they must be memorized and organized into a 
structure S (Van Dalen 1983). This structure is an exten- 
sional representation of the perceived world, in which 
stimuli perceptually related to one another are stored 

together. In the example of figure 10, signals must be 
memorized with their attributes and organized into some 
structure, in order to lend themselves to their intended 
elaboration. A way of organizing them is to record the 
measures of the associate attributes values in a table inside 
a database. Obviously, in a natural system, stimuli from 
the world are elaborated by their natural perceptual sys- 
tems, which have the definition of both f and P embed- 
ded in their anatomo-physiology, as well as suitable 
memorization mechanisms and appropriate relations with 
action. In an artificial system, storage occurs in a relational 
database, manipulated via relational algebra operators 
(Ullman 1983). We will denote by . fthe memorization 

process, which generates a memory structure S: 

S =./f(P). 

Finally, to describe, in a symbolic way, the perceived 
world, and to communicate with other agents, a language 
L is needed. L allows the perceived world to be described 

intentionally. Assigning names to the tables themselves, to 
the objects, attributes, functions and relations is then a 

process of description: 

L= (/(S). 

In the example of figure 10, for instance, the intensity 
of the signal on a spot will be called 'intensity', the pos- 
itions of the detectors will be related to their 'x- and y- 
coordinates', the physical/biological contiguity of detec- 
tors will be called 'adjacency', and so on. Finally, a theory 
enables reasoning about the world. The theory may also 
contain general background knowledge, which does not 
belong to any specific domain. At the theory level, infer- 
ence rules are used. We call theorization the process of 

expressing the theory in the language L (possibly enriched 
to accommodate domain-independent background 
knowledge): 

T= (LL). 
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Figure 10. Picture of a microarray, a modem tool for analysing gene expression. It consists of a small membrane, or glass 
slide, containing samples of many genes arranged in a regular two-dimensional array (up to 40 000 genes). Each spot on an 
array is associated with a particular gene. The location and intensity of a colour provides an estimate of the expression level of 
the gene(s) in the sample (diseased) and in the control biological extract (healthy). Green and red spots represent 
underexpressed and overexpressed genes, respectively, in the sample versus the control. 
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Figure 11. The four levels involved in representing and reasoning about a world W in the KRA model. P denotes a perception 
of objects and their physical links in W. S is a set of tables, each one grouping objects sharing some property. L is a formal 
language, whose semantics is evaluated on the tables of S. Finally, T is a theory formulated using L, in which the properties of 
the world and general knowledge are embedded. General background knowledge may provide inputs at any level. 

In the example of figure 10, a theory is needed to inter- 

pret the gene expression variation, hence transforming 
pure measurements into experimental evidence. More- 
over, formal knowledge, such as the symmetry of the 

adjacency relation, can be added to T. 
The four levels are ordered as in figure 11. They rep- 

resent the basis of our KRA model. An ascending (or 
descending) arrow from a box X to Y on figure 11 indi- 
cates that the syntactic and semantic definition of level Y 
must be interpreted (or is a description) based on the con- 
tent of level X. As no world is totally isolated, a body of 

background knowledge provides, in principle, input to 
each level, especially to the theory, where general laws and 

domain-independent facts may be needed. The primary 
role of perception (level P in figure 11) in biasing the 

upper levels is strongly advocated by Goldstone & 

Barsalou (1998). This dependency, however, does not 
mean that the content of the levels is generated strictly 
bottom-up: a complex bi-directional interplay may exist, 
and conceptualization or task information may even affect 

perception (Goldstone & Barsalou 1998). In figure 11, 
background knowledge may be the database that contains 
the clone identifier of each gene of each spot on the 

microarray. 
A deeper analysis of the relations among the introduced 

representation levels is out of the scope of computer 
science, because it requires contributions from philosophy 
and cognitive science, at the very least. Thus, in this paper 
the levels are considered as given, and the nature of the 
-, /f, X) and 7processes are not discussed. Instead, we 
concentrate on representational issues and define a 

description framework @i(W), over a world W, as the 4- 
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Figure 12. A grounded abstraction is a mapping between a ground representation framework Dg(W) = (Pg,Sg,Lg,Tg) to 
another Da( W) = (Pa,Sa,La,Ta) = t(Dg(W)) such that the perception of the latter (Pa) is simpler than that of the first (Pg). 
The perception on the right is simpler than the one on the left according to definition 3.2. 

tuple 5((W) = (P,S,L, T). Before proceeding to any formal 
definitions, it is worth spending some time on the notion 
of world W. In fact, it is by no means intended that the 
world W be restricted to the physical one, and that the 

perception P and the perception process v are only 
related to our five senses. A world W could be a concep- 
tual one, for instance, a text, in which a reading process 
identifies words and phrases, which form a 'perception' 
_ of the text (see figure 8b). 

(b) Formal definition of simplicity in a description 
framework 

Given a world W, let P be a perception of W resulting 
from a process e that uses a set of sensors, each one tail- 
ored to capture a particular signal. Each sensor has a resol- 
ution threshold that establishes the minimum difference 
between two signals in order to consider them as distinct. 
A set of values provided by the sensors in v is called a 

signal pattern or a configuration. Let F be the set of poss- 
ible configurations detectable by Y. 

Definition 5.1 (perception simplicity; Saitta & Zucker 
2001). Given a world W, let -, and 2 be two perception processes 
generating P, and P2, respectively. Let Fr and F2 be the correspond- 
ing configuration sets. The perceived world P2 will be said simpler 
than P1 if and only if K(F2) < K(FD, where K is the Kolmogorov 
complexity of a configuration set (Kolmogorov 1965; Li & Vit- 
dnyi 1993). 

The above definition has the advantage of linking sim- 

plicity to its semantic meaning of the cognitive effort of 
information processing, rather than to its syntactic 
expression. Obviously, syntactic complexity may have an 

effect on the simplicity of a perceived world, when a higher 
syntactic complexity implies more work to handle the con- 
veyed information. This definition is general. It does not 
impose any semantic link between Fl and F2; it only states 
that F2 is simpler to describe. 

This definition respects the transitive aspect of an 
abstraction (Iwasaki 1990; Yoshida & Motoda 1990), and 
chains of abstraction mappings can be considered. A dis- 
cussion of what concerns the relation between simplicity 
and information content can be found elsewhere (Li & 

Vitanyi 1993). Here, it is sufficient to say that abstraction 
is not concerned with the probability distribution of the 

configurations belonging to a set of F: just one configur- 
ation, the observed one, y, is relevant. Moreover, the rel- 
evant problem is not recognizing the configuration, but 

describing it. 
Given a world W, let Dg(W) = (Pg,Sg,Lg,Tg) and 

Da(W) = (Pa,Sa,La,Ta) be two description frameworks over 
the same world W, which we conventionally label as 

ground and abstract, respectively. An abstraction is a map- 
ping X; defined as follows: 

Definition 5.2 (grounded abstraction; Saitta & Zucker 
2001). An abstraction is a mapping _/ from a ground description 
framework Dg(W) onto an abstraction Da(W) such that 
Pa = -a(W) is simpler-according to definition 5.1--than 

Pg( W) . 

This definition is illustrated in figure 12. According to 
this definition, all the transformations introduced in ? 2a-d 
are formally defined as abstractions, as can be demon- 
strated using definition 5.1. 
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Figure 13. An abstract structure Sa may be obtained by applying an S-operator a to the ground structure Sg, given that it is 
compatible with the P-operator co defined at the perception level. 

6. ABSTRACTION OPERATORS 

Section 5 provides a formal definition of abstraction as 
a functional mapping X between a given perception of a 
world and a simpler one. To build abstractions that are 

grounded on perception in a constructive manner, this 
section introduces the notion of abstraction operators at 
the levels of structure, language and theory. To guarantee 
that the operators at the different levels of the description 
framework are compatible with the abstraction defined at 
the perceptual level, a notion of compatibility is introduced. 

(a) P-operators, S-operators, L-operators 
and T-operators 

Given an abstraction -, as defined in definition 5.2, an 
abstract P-operator w is defined as follows: 

Definition 6.1 (abstract perception operator; Saitta & 
Zucker 2001). An abstraction P-operator o denotes a procedure 
that takes as input a perception Pg(W) of a world W and outputs 
a simpler perception Pa(W) of the same world. 

In other words, a P-operator represents a generic trans- 

formation of world perceptions, which, applied to a parti- 
cular perception, produces an abstraction of it. There exist 
an infinite number of transformations of a given world 

perception that satisfy the above definition. Among all P- 

operators, we are interested in the ones that have a certain 

degree of generality (universality), i.e. the ones that have 

larger domains of application. P-operators classically oper- 
ate at the level of signals or a stream (be it an image, a 
sound, a text, ...). Filters in image analysis are typical 
example of P-operators (e.g. the ones that transform the 

images of figures 2a, 3a, 4a and 5a). 
The notion of abstract S-operators, L-operators and T- 

operators are defined in an analogous fashion (Saitta & 
Zucker 2001). The key idea is that each of these operators 
represents a type of algorithm that takes input knowledge 
represented at a given formalism level and produces a 
more abstract representation of this knowledge in the 
same formalism. SELECTION and DELETE are typical 
abstract S-operators on relational databases (Goldstein & 

Storey 1999). At the language level, XSLT16 is an example 
of programming language that supports transformations. 

As for T-operators that simplify theories, the Prolog 
language or other dedicated rewriting languages are good 
examples of programming languages that support the 
writing of transformation algorithms. 

(b) Compatible operators 
Given an abstraction P-operator wo, there are two ways 

to build an abstract structure Sa. The first path consists in 

applying co to the ground perception to obtain the abstract 
perception Pa, then 'memorizing' (Ja(Pa)) it into the 
abstract structure Sa (see path 1-2 in figure 13). A second 

path corresponds to the use of an S-operator a( that oper- 
ates directly on the ground structure Sg (see path 1'-2' in 

figure 13). 
The first path requires one to explicitly build the 

abstract world perception Pa and then to memorize it. 
Because the memorization step of a new perception is dif- 
ficult to automate fully, it is more useful to have a trans- 
formation that works directly on the ground structure Sg. 
The notion of operator compatibility is introduced to 
express the fact that both the mentioned paths must lead 
to the same structure. This compatibility provides the 
semantic foundation to the abstract S-operators at the 
structure level. 

Definition 6.2 (S-operator compatibility). An S-operator a, 
applicable at the structure level, is compatible with a P-operator w 
at the world perception level, if and only if or(ffg(Pg)) 
= fI( (O(Pa)). 

The compatibility of L-operators and T-operators is 
defined in an analogous manner. It is important to insist 
on the fact that abstraction operators are usually 
combined with reformulation operators. Whereas in 

approaches to abstraction based on mappings at the 
language level the consistency problem may emerge 
(Tenenberg 1987; Nayak & Levy 1995), in the grounded 
approach presented, consistency is guaranteed by the fact 
that the considered abstractions correspond to actually 
possible perceptions. However, a caveat is that it may be 

impossible to define compatible transformation rules at 
the language level. Goldstone & Barsalou (1998) have also 
mentioned this point in relation to human perception. 
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7. ILLUSTRATIVE EXAMPLES OF GROUNDED 
ABSTRACTION IN CARTOGRAPHY 

In this section, an example is provided of the use of the 
presented grounded theory of abstraction in the cartogra- 
phy domain. It concerns: (i) the modelling of the knowl- 
edge acquisition process of map design; and (ii) the partial 
automation of a part of this process called cartographic 
generalization. 

(a) Abstraction in the map design process 
A domain where the description framework introduced 

in the previous sections finds a natural application is the 
cartography domain. Consider the process of map design 
(Brassel & Weibel 1988; Armstrong 1991; Mustiere & 
Zucker 2002), described in figure 14 (steps 1-4). The map 
production process closely follows the model of abstrac- 
tion presented in this paper. The creation of maps from 
geographical data is a multiple-step process that involves 
several intermediate representations. The first step of car- 
tography is to collect data from the geographical world 
(W), or part of it. This is usually done through aerial 
photographs (Yg(W)) or satellite images. The photo- 
graphs produced are the perceived world P. From this pic- 
ture, an expert (a photogrammetrist or a stereoplotter 
operator) manually extracts a GDB (also called Digital 
Landscape Model or DLM by Brassel & Weibel (1988)). 
A GDB contains the coordinates of all the points and lines 
that were identified by the photogrammetrist on the 
images. The photogrammetrist performs, simultaneously, 
an abstraction and a reformulation of the image. In 
addition, during this second step, she/he associates a 
category (road, building, river, field, etc.) to the lines 
identified. In the third step, the GDB is displayed by 
means of cartographic symbols applied to objects stored 
in it. This step is performed by a cartographer and corre- 
sponds to the choice of a language, L, which, in this case, 
is an iconic one, consisting of symbols such as roads, cit- 
ies, buildings, rivers, etc. Finally, maps are not an end 
in themselves; maps are created for space and landscape 
analysis, for itinerary search, measuring distances, esti- 
mating population density, or other geographical theory 
construction (T). The map may therefore be completed 
in a fourth step by various types of information 
corresponding to the theme of the map (geology, rainfall, 
population, tourist, history, etc.). The distinction into lev- 
els, represented in figure 14 by the vertical axis, is only 
one aspect of the cartographic process of designing maps. 
All steps of map creation involve both knowledge rep- 
resentation and knowledge abstraction, because each step 
retains only part of the information available; a GDB does 
not contain all the information seen on the image by the 
photogrammetrist.17 Thus, map creation is best rep- 
resented as a process combining, at each step, an abstrac- 
tion (a simplification) and a reformulation (a change of 
formalism). The KRA model introduced in ? 5 supports 
the modelling of both the process of abstraction (change 
of level of detail) and the process of reformulation (change 
of language). Indeed, usually these two processes are 

closely intertwined in cartography and difficult to 

distinguish from one another. This distinction provides 
the basis for automating cartographic knowledge acqui- 
sition as a combined acquisition of specific knowledge 

for abstraction and knowledge for reformulation, as 

explained below. 

(b) Abstraction in the cartographic generalization 
process 

The third step is usually repeated for each desired scale 
(see step 3' in figure 14), and consists in using the GDB 
to define the objects to be symbolized on the map (e.g. 
which sets of lines are considered as houses), their position 
(e.g. a house may have to be moved to be more readable), 
their level of detail (e.g. the sinuosity of a road). This step 
is called cartographic generalization (Muller et al. 1995). 
This operation is far more complex than a simple 
reduction, and it involves abstracting details so that the 

map is readable at the chosen scale. The basic operation 
that an expert uses to perform cartographic generalization 
is to apply various transformation algorithms to the GDB. 
We have developed a machine learning approach to learn 
how to apply these operators to produce acceptable maps. 
Because of the complexity of the task, it appears (both 
theoretically and experimentally) that a direct approach, 
consisting in learning from the GDB, is inappropriate. To 
address this problem, the modification of the represen- 
tation language is a promising approach that increases 
both accuracy and rule comprehensibility. 

The abstraction process is to progress from a detailed 
description of each part of a geographical object to a more 

global description, containing only those properties of the 

object relevant to the map users' needs. For example, an 
abstraction is to progress from a complete description of 
the geometry of a set of streets in a town to their descrip- 
tion as a grid (Mustiere et al. 1999). A concrete descrip- 
tion of the proposed model has been done in a 

cartographic generalization of buildings and roads 
(Mustiere et al. 2000), leading to a partial automation of 
the process and very significant results. As a tangible proof 
of the cartographic quality of the results obtained, the 

algorithms developed are now incorporated into the mass 

production of maps at the French National Geographic 
Institute (IGN). 

8. CONCLUSION 

Abstraction is an elusive notion that plays a fundamen- 
tal role in both human intelligence and AI. In the latter, 
the common idea that lies behind most abstractions is that 
of a change of the representation that reduces the compu- 
tational cost for solving a class of task. There are countless 
illustrative examples of changes of representation. They 
often lead to an exponential increase in problem-solving 
performances. In this paper, it has been argued that this 

pragmatic definition of abstraction does not support build- 

ing representation changes that lead to simpler represen- 
tation. By analysing the notion of simplicity from an 
information quantity point of view, the complementary 
roles of reformulation and abstraction in any represen- 
tation change have been considered. The model we have 
introduced captures some important aspects of the pre- 
viously proposed theory of abstractions and limits itself to 

grounded abstraction, i.e. abstraction that may be charac- 
terized by an information loss at the perception level. 

Although inherently limited, this definition of abstraction 

supports the definition of abstraction operators at different 
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Figure 14. Two types of process are intermixed in the cartographic process of conceiving and drawing a map. They are 
representation changes through the different levels of representation involved in the process of map drawing (Mustiere & 
Zucker 2002). Abstractions are represented by horizontal arrows, reformulations by vertical arrows, and other arrows represent 
representation changes. Such diagrams are called Reformulation/Abstraction Description (RAD) diagrams. 

levels of knowledge representation (raw data, relational 
tables, languages, theories, etc.). These operators capture 
the essence of abstraction and provide a means of both 
characterizing existing abstraction and operationalizing 
the building of new abstraction at the database, language 
and theory level, provided compatible operators exist. 

Operators have proved particularly useful in formalizing 
the abstraction performed in cartographic generalization 
and significantly improved its partial automation 

(Mustiere et al. 2000). 
This grounded approach to abstraction still leaves open 

many fundamental questions. One question concerns the 

study of the most relevant property that operators ought to 

preserve for deductive, abductive and inductive reasoning. 
Another question concerns an algebraic formalization of 
abstraction operators. Such a formalization would be use- 
ful to combine abstraction operators and define the 

properties to be preserved. Furthermore, a comprehensive 
description of useful operators in the different fields of AI 
would offer a way to classify existing contributions to 
abstraction. An exciting direction for research includes the 
automatic change of representation by composing abstract 
and reformulation operators. Early experiments (Bredeche 

et al. 2003), in applying abstraction operators to explore 
a space of representations to improve the learning of 
anchors in autonomous robots, are a promising step for 
designing more autonomous and adaptive systems. 

This work is a synthesis of different contributions made in col- 
laboration with Lorenza Saitta. The author benefits from a 
grant to his EPML-32 CNRS IAPuces team. 

ENDNOTES 

1The words 'mapping', 'function', 'map', 'operator', 'transformation' and 
'morphism' are all synonyms; they are often used in the representation 
change literature to denote the relation between an initial and a 
changed representation. 
2Sub-sampling can be implemented by keeping only a fraction of the pix- 
els from the original. This latter transformation is the most basic of all 
image compression techniques and may be described as domain hiding. 
3The decompression of a lossy compressed image does not result in an 
image similar to the original one. 
4Let us underline the ambiguity of the term representation, which refers to 
both the notion of representation formalism as well as a specific description 
in a given formalism. 
5'Changes of [logical] representation are characterized as isomorphisms 
and homomorphisms, correspondingly to changes of information struc- 
ture and information quantity, respectively' (Korf 1980). 
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6Definitions 3.1 and 3.2 are related to the notions of isomorphisms and 
homomorphisms introduced by Korf (1980). 
7Imielinski (1987) has proposed an approximate reasoning framework for 
abstraction. He called such a kind of reasoning 'limited', because it is 
weaker than the general predicate logic-proof method, but it leads to sig- 
nificant computational advantages. 
8Occam's razor is a logical principle attributed to the medieval philos- 
opher William of Occam (or Ockham). The principle states that one 
should not make more assumptions than the minimum needed. 
9The capacity may be esimated using the Vapnik-Chervonenkis dimen- 
sion (VC-dim). 
'OA STRIPS operator is a triple (Precondition, Deletion, Addition), 
respectively corresponding to a set of ground facts, denoting the oper- 
ator's preconditions, deleted facts and added facts. This type of represen- 
tation is widely used in planning, and ABSTRIPS is a well-known abstract 
planner that extends STRIP abilities (Yang 1997). 
"'Notice that we do not formally study the requirement for simplicity or 
any more global requirements for increased efficiency. This would require 
some complexity arguments which will be discussed in subsequent papers' 
(Giunchiglia & Walsh 1992, p. 5). 
12This property is indeed much desired in machine learning as it used to 
explore the space of hypothesis that generalize examples and not counter- 
examples of a concept. 
3Backstrom & Jonsson (1995) have showed that there are domains for 

which the ALPINE (Knoblock 1994) and HIGHPOINT (Bacchus & 
Yang 1994) algorithms may generate exponentially longer plans than opti- 
mal, despite the downward refinement property. 
"The no-free-lunch-theorem states that there is no such thing as a univer- 
sal 'best' algorithm for all possible search problems. 
'5The problem of defining what is and what is not an object is too difficult 
a problem. If, historically, the primary goal of computer vision has been 
to identify an object (Stone 1993), a unique operational definition of what 
an object is has not emerged. In the field of human vision, several 
researchers suggest that anything perceived that we can either act or talk 
upon may be considered as an object (Buser & Imbert 1992). 
'6XSLT (eXtensible Stylesheet Language Transformations) is a language 
for transforming XML documents into other XML documents. 
'7The ideal geographical dataset that would be obtained without any 
abstraction is called the nominal ground. It is considered to represent the 
true value for the values contained in the geographical dataset, and is used 
to evaluate the quality of the geographical dataset. 
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